| s What characteristics of me:remental m

you'll learn about the process that provides a framework for

software engineering practice. These questions are addressed -
in the chapters that follow: ‘
e Whatisasoftware processv ST

‘f What are the generic framework actiwues that are prcsent in
every software process? - S

e« How are processes modeled and what are process pattemﬁ'f’,,.

e What are prescriptive process - méels an
i %trengths and weaknesses? o

In this part of Software Engznaering A Pmctrtzoners Appraach‘j“ e

| ‘make them =
- amenable to modern software pro}ects S
. What is the unified process? P
. Whyis agility” a watchword in modem 'ﬁware cngmeénng '
work? i by ,
. What is agﬂe software. development and hcw doc;
s from more traditional process models?

‘ Once these quesuons are answered you’ll be better pmpared to
understand the context in which software engmeering pfactice is

. applied.

51

Key
CONCEPTS
M

IS0 9001: 2000
process assessment
process framework
process patierns
process technology
PSP

fask set

TSP

wmbrella activities

A GENERIC VIEW OF PROCESS

o
aklv e B\’ tAannak \t.i?
n a fascinating book that provides an economist’s view of software and soft-

ware engineering, Howard Baetjer, Jr. [BAE98] comments on the software

process: o
QYL [}\,i f '~ FRL A
Because software, like gll ca%i;?l, is embodied knowledge, and because that knowl-

edge is initially fé@&&q ;xia étent, and incomplete in largc;@easure, software de-
velopment is a social learning process. The process is a"&x_:a‘_}icgig‘“ﬁ_ﬁﬁ “Which the
knowledge that must become the software is brought together and embodied in the
software. The process provides interaction between users and designers, between
users and evolving tools, and between designers and evolving tools [technology]. It is
an jterative process in which the evolving tool itself ig (3 (gg ghe medium for com-
munication, with each new round of the dialogue eliciting mg're useful knowledge
from the people involved.

Indeed, building computer software is an iterative learning process, and the
outcome, something that Baetjer would call “software capital,” is an embodiment
of knowledge collected, distilled, and organized as the process is conducted.

Rool
Puu 6?

for |

CHAPTER 2 A GENERIC VIEW OF PROCESS 53

But what exactly is a software process from a technical point of view? Within the
context of this book, we define a software process as a framework for the tasks that
are required to build high-quality software. Is process synonymous with software en-
gineering? The answer is yes and no. A software process defines the approach that
is taken as software is engineered. But software engineering also encompasses tech-
nologies that populate the process—technical methods and automated tools.

More important, <s)o(t’f)tvare engineering is performed by creative, knowledgeable
people who should adap ¢ %ature software process that is appropriate for the prod-
ucts they build and the demands of their marketplace.

5 How do we
b define

software

engineering?

Although hundreds of authors have developed personal definitions of software engi-
neering, a definition proposed by Fritz Bauer [NAU69] at the seminal conference on
the subject still serves as a basis for discussion:

[Software engineering is] the establishment and use of sound engineering principles in or-
der to obtain economically software that is reliable and works efficiently on real machines.

Almost every reader will be tempted to add to this definition. It says little about the
technical aspects of software quality; it does not directly address the need for cus-
tomer satisfaction or timely product delivery; it omits mention of the importance
of measurement and metrics; it does not state the importance of an effective
process. And yet, Bauer’s definition provides us with a baseline. What are the
“sound engineering principles” that can be applied to computer software develop-
ment? How do we “economically” build software so that it is “reliable”? What is re-
quired to create computer programs that work “efficiently” on not one but many
different “real machines"? These are the questions that continue to challenge
software engineers.)

ingtipﬁmorahodyofknwledge, engineering is a verb, an action word; o way of o

The IEEE [IEE93] has developed a more comprehensive definition when it states:

Software Engineering: (1) The application of a systematic, disciplined, quantifiable ap-
proach to the development, operation, and maintenance of software; that is, the applica-
tion of engineering to software. (2) The study of approaches as in (1).

And yet, what is “systematic, disciplined” and “quantifiable” to one software team
may be burdensome to another. We need discipline, but we also need adaptability
and agility, « V. .+ ety

54

PART ONE THE SOFTWARE PROCESS

Software engi-
neering layers

%N
o

POINT
Software engineering
encompasses a
process, methods,
and fools.

A quality focus

Software engineering is a layered technology. Referring to Figure 2.1, any engi-
neering approach (including software engineering) must rest on an organizational
coantrqent to quallt;y Total Quallty Management, Six Sigma, and similar philoso-
phies fi ér a cdntmuous“process improvement culture, and it is this culture that ulti-
mately leads to the development of increasingly more effective approaches to software
engineering. The bedrock that supports software engineering is a quality focus.

The foundation for software engineering is the process layer. Software engineer-

ing process is the glue that holds the technology layers together and enablés fatlonaI '

and timely development of computer software. Process defines a framework [PAU93]
that must be established for effective delivery of software engineering technology.
The software process forms the basis for management control of software projects
and establishes the context in which technical methods are applied, work products
(models, documents, data, reports, forms, etc.) are produced, milestones are estab-
lished, quality is ensured, and change is properly managed.

Software engineering methods provide the technical “how to’s” for building soft-
ware. Methods encompass a broad array of tasks that include communication, re-
quirements analysis, design modeling, program construction, testing, and support.
Software engineering methods rely on a set of basic principles that govern each area
of the technology and include modeling activities and other descrlptlve techniques.

Software engineering tools provide automated or semiautomated support for the
process and the methods. When tools are integrated so that information created by
one tool can'be used by another, a system for the support of software development,
called computer-aided software engineering, is established.

A process framework establishes the foundation for a complete software process by
identifying a small number of framework activities that are applicable to all software
projects, regardless of their size or complexity. In addition, the process framework
encompasses a set of umbrella activities that are applicable across the entire software
process.

CHAPTER 2 A GENERIC VIEW OF PROCESS SRINIVAS COLLEGE OF 5
PG MANACEMZ T STUDIES

A software
process -
framework

ACC NO.fe.eusomms .1
No.:

Software process

s

Umbrella activities

framework activity # 1

software engineering action #1.1

Task sets [

Task sets

framework activity # n

software engineering action #n.1

Task sets

Task sets

Referring to Figure 2.2, each framework activity is, populated by a set of software
engineering actions—a collection of related tasks that produces a major software
engineering work product (e.g., design is a software engineering action). Each action
is populated with individual work tasks that accomplish some part of the work im-
plied by the action.

doing what, when, and how to reach a certain gool.”
' Ivor Jucqbson, GrdyM ‘

generic process
framework
activities?

PART ONE THE SOFTWARE PROCESS

The following generic process framework (used as a basis for the description of
process models in subsequent chapters) is applicable to the vast majority of software
projects:

Communication. This framework activity involves heavy communication and
collaboration with the customer (and other stakeholders') and encompasses re-
quirements gathering and other related activities.

Planning. This activity establishes a plan for the software engineering work
that follows. It describes the technical tasks to be conducted, the risks that are
likely, the resources that will be required, the work products to be produced, and a
work schedule.

Modeling. This activity encompasses the creation of models that allow the de-
veloper and the customer to better understand software requirements and the de-
sign that will achieve those requirements.

Construction. This activity combines code generation (either manual or auto-
mated) and the testing that is required to uncover errors in the code.

Deployment. The software (as a complete entity or as a partially completed in-
crement) is delivered to the customer who evaluates the delivered product and
provides feedback based on the evaluation.

These five generic framework activities can be used during the development of small
programs, the creation of large Web applications, and for the engineering of large,
complex computer-based systems. The details of the software process will be quite
different in each case, but the framework activities remain the same.

d that thers must be o simplified explanation of nature, because God i ot capricious o arbitrary.
 the software engineer. Much of the complexity that he must master is arbitrary complexity:

Using an example derived from the generic process framework, the modeling ac-
tivity is composed of two software engineering actions—analysis and design. Analy-
sis* encompasses a set of work tasks (e.g., requirements gathering, elaboration,
negotiation, specification, and validation) that lead to the creation of the analysis
model (and/or requirements specification). Design encompasses work tasks (data

1 A stakeholder is anyone who has a stake in the successful outcome of the project—business man-
agers, end-users, software engineers, support people, and so forth. Rob Thomsett jokes that “a
stakeholder is a person holding a large and sharp stake. . . . If you don't look after your stakehold-
ers, you know where the stake will end up.”

2 Analysis is discussed at length in Chapters 7 and 8.

CHAPTER 2 A GENERIC VIEW OF PROCESS

[
&,

POINT

Different projects
demand different task
sefs. The software team
chooses the tusk set
based on problem and
project characterisfics.

Task Set

A task set defines the actual work to be done
to accomplish the objectives of a software
engineering action. For example, “requirements
gathering” is an important software engineering action
that occurs during the communication activity. The goal
of requirements gathering is to understand what various
stakeholders want from the software that is to be built.

For a small, relatively simple project, the task set for
requirements gathering might look like this:

1. Make a list of stakeholders for the project.

2. Invite all stakeholders to an informal meeting.

3. Ask each stakeholder to make a list of features and
functions required.

4. Discuss requirements and build a final list.

5. Prioritize requirements.

6. Note areas of uncertainty.

For a larger, more complex software project, a
different task set would be required. It might encompass
the following work tasks:

1. Make a list of stakeholders for the project.
2. Inferview each stakeholder separately to determine

\ overall wants and needs.

based on stakeholder input.

4. Schedule a series of facilitated requirements
gathering meetings.

5. Conduct meefings.

6. Produce informal user scenarios as part of each
meeting.

7. Refine user scenarios based on stakeholder
feedback.

8. Build a revised list of stakeholder requirements.

9. Use qudlity function deployment techniques to

prioritize requirements.

Package requirements so that they can be delivered

incrementally.

11. Note constraints and restrictions that will be placed

on the system.
12. Discuss methods for validating the system.

Both of these task sets achieve requirements
gathering, but they are quite different in their depth and
formality. The software team chooses the task set that will
allow it to achieve the goal of each process activity and
software engineering action and still maintain quality
and agility.

J

57

design, architectural design, interface design, and component-level design) that cre-
ate a design model (and/or a design specification).?

Referring again to Figure 2.2, each software engineering action is represented by a
number of different task sets—each a collection of software engineering work tasks, re-
lated work products, quality assurance points, and project milestones. The task set that
best accommodates the needs of the project and the characteristics of the team is cho-
sen. This implies that a software engineering action (e.g., design) can be adapted to the
specific needs of the software project and the characteristics of the project team.

3. Build a preliminary list of functions and features

The framework described in the generic view of software engineering is comple-
mented by a number of umbrella activities. Typical activities in this category include:

!

Software project tracking and control—allows the software team to assess
progress against the project plan and take necessary action to maintain schedule.

t.

3 It should be noted that “modeling” must be interpreted somewhat differently when the mainte-
nance of existing software is conducted. In some cases, analysis and design modeling do occur, but
in other maintenance situations, modeling may be used to help understand the legacy software as
well as to represent additions or modifications to it.

58

2
o
POINT
Umbrella activities
occur throughout the
software process and
focus primarily on
project management,
tracking, and control.

oy
Yo
POINT
Software process
adaptation is essential

for project success.

How do
process
models differ from

one another?

PART ONE THE SOFTWARE PROCESS

Risk management—assesses risks that may effect the outcome of the project
or the quality of the product.
iR TPy

Software quality a%surance——deﬁnes and conducts the activities required to
ensure software quality.

Formal technical reviews—assesses software engineering work products in
an effort to uncover and remove errors before they are propagated to the next ac-
tion or activity.

Measurement—defines and collects process, project, and product measures
that assist the team in delivering software that meets customers’ needs; can be
used in conjunction with all other framework and umbrella activities.

Software configuration management—manages the effects of change
throughout the software process.

Reusability management—defines criteria for work product reuse (including
software components) and establishes mechanisms to achieve reusable components.

Work product preparation and production—encompasses the activities re-
quired to create work products such as models, documents, logs, forms, and lists.

Umbrella activities are applied throughout the software process and are discussed in
detail later in this book.

All process models can be characterized within the process framework shown in
Figure 2.2. Intelligent application of any software process model must recognize that
adaptation (to the problem, project, team, and organizational culture) is essential for
success. But process models do differ fundamentally in:

e The overall flow of activities and tasks and the interdependencies among
activities and tasks.

e The degree to which work tasks are defined within each framework activity.
e The degree to which work products are identified and required.

e The manner which quality assurance activities are applied.

e The manner in which project tracking and control activities are applied.

¢ The overall degree of detail and rigor with which the process is described.

o The degree to which customer and other stakeholders are involved with the
project.

e The level of autonomy given to the software project team.

e The degree to which team organization and roles are prescribed.

only a theme which on inteligent cook con play each fime with o varigtion.”

Process models that stress detailed definition, identification, and application of process
activities and tasks have been applied within the software engineering community for

un “agile”
process?

CHAPTER 2 A GENERIC VIEW OF PROCESS 59

the past 30 years. When these prescriptive process models are applied, the intent is to
improve system quality, to make projects more manageable, to make delivery dates and
costs more predictable, and to guide teams of software engineers as they perform the
work required to build a system. Unfortunately, there have been times when these ob-
jectives were not achieved. If prescriptive models are applied dogmatically and without
adaptation, they can increase the level of bureaucracy associated with building com-
puter-based systems and inadvertently create difficulty for developers and customers.

Process models that emphasize project agility and follow a set of principles® that
lead to a more informal (but, proponents argue, no less effective) approach to soft-
ware process have been proposed in recent years. These agile process models em-
phasize maneuverability and adaptability. They are appropriate for many types of
projects and are particularly useful when Web applications are engineered.

Which software process philosophy is best? This question has spawned emotional
debate among software engineers and will be addressed in Chapter 4. For now, it is
important to note that these two process philosophies have a common goal—to create
high-quality software that meets the customer’s needs—but different approaches.

on the CMM can be
bttp:/ /www.sel.
cmw.od.e/commi/.

The Software Engineering Institute (SEI) has developed a comprehensive process
meta-model that is predicated on a set of system and software engineering capabil-
ities that should be present as organizations reach different levels of process
capability and maturity. To achieve these capabilities, the SEI contends that an or-
ganization should develop a process model (Figure 2.2) that conforms to The Capa-
bility Maturity Model Integration (CMMI) guidelines [CMMO02].

The CMMI represents a process meta-model in two different ways: (1) as a con-
tinuous model and (2) as a staged model. The continuous CMMI meta-model de-
scribes a process in two dimensions as illustrated in Figure 2.3. Each process area
(e.g., project planning or requirements management) is formally assessed against
specific goals and practices and is rated according to the following capability levels:

Level 0: Incomplete. The process area (€.g., requirements management) is ei-
ther not performed or does not achieve all goals and objectives defined by the
CMMI for level 1 capability.

Level 1: Performed. All of the specific goals of the process area (as defined by
the CMMI) have been satisfied. Work tasks required to produce defined work prod-
ucts are being conducted.

Level 2: Managed. All level 1 criteria have been satisfied. In addition, all work
associated with the process area conforms to an organizationally defined policy;
all people doing the work have access to adequate resources to get the job done;

4 Agile models and the principles that guide them are discussed in Chapter 4.

60

PART ONE THE SOFTWARE PROCESS

CIIX)

CMMI process
area capa-
bility profile
[PHIO2]

CovaP

Every organization
should strive to
achieve the intent of
the CMMI. However,
implementing every
aspect of the model
may be overkill in
some situations.

PP Project planning

REQM Requirements management

MA Measurement and analysis
5 CM Configuration management

PPQA Process and product QA

Capability level

CM PPQA
Process area

others —»

stakeholders are actively involved in the process area as required; all work tasks
and work products are “monitored, controlled, and reviewed; and are evaluated for
adherence to the process description” [CMMO2].

Level 3: Defined. All level 2 criteria have been achieved. In addition, the
process is “tailored from the organization'’s set of standard processes according
to the organization’s tailoring guidelines, and contributes work products, mea-
sures, and other process-improvement information to the organizational process
assets” [CMMO02].

Level 4: Quantitatively managed. All level 3 criteria have been achieved.
In addition, the process area is controlled and improved using measurement and
quantitative assessment. “Quantitative objectives for quality and process
performance are established and used as criteria in managing the process”
[CMMO2].

Level 5: Optimized. All capability level 4 criteria have been achieved. In addi-
tion, the process area is adapted and optimized using quantitative (statistical)
means to meet changing customer needs and to continually improve the efficacy of
the process area under consideration” [CMMO02].

riss s solf-inflicted, us when a (10 says, “I'd rather have it wrong than have it We

The CMMI defines each process area in terms of “specific goals” and the “specific
practices” required to achieve these goals. Specific goals establish the characteristics
that must exist if the activities implied by a process area are to be effective. Specific
practices refine a goal into a set of process-related activities.

CHAPTER 2 A GENERIC VIEW OF PROCESS 61

For example, project planning is one of eight process areas defined by the CMMI
for the “project management” category.® The specific goals (SG) and the associated
specific practices (SP) defined for project planning are [CMMO02]:

SG 1 Establish estimates
SP 1.1-1 Estimate the scope of the project
SP 1.2-1 Establish estimates of work product and task attributes
SP 1.3-1 Define project life cycle
SP 1.4-1 Determine estimates of effort and cost

SG 2 Develop a Project Plan

SP 2.1-1 Establish the budget and schedule
%"W“’“ SP 2.2-1 Identify project risks
oswellosg
dowrdoodable version SP 2.3-1 Plan for data management
of the CAWMI can be .
bicined ot SP 2.4-1 Plan for project resources
www.sel.ow. SP 2.5-1 Plan for needed knowledge and skills
oty /cneni /. :

SP 2.6-1 Plan stakeholder involvement
SP 2.7-1 Establish the project plan
SG 3 Obtain commitment to the plan
SP 3.1-1 Review plans that affect the project
SP 3.2-1 Reconcile work and resource levels
SP 3.3-1 Obtain plan commitment
In addition to specific goals and practices, the CMMI also defines a set of five
generic goals and related practices for each process area. Each of the five generic goals
corresponds to one of the five capability levels. Hence, to achieve a patticular capa-
bility level, the generic goal for that level and the generic practices that correspond to
that goal must be achieved. To illustrate, the generic goals (GG) and practices (GP) for
the project planning process area are [CMMO2]: '
GG 1 Achieve specific goals

GP 1.1 Perform base practices

GG 2 Institutionalize a managed process
GP 2.1 Establish an organizational policy
GP 2.2 Plan the process

GP 2.3 Provide resources

5 Other process areas defined for “project management” include: project monitoring and control,
supplier agreement management, integrated project management for IPPD, risk management, in-
tegrated teaming, integrated supplier management, and quantitative project management.

62 PART ONE THE SOFTWARE PROCESS

GP 2.4 Assign responsibility

GP 2.5 Train people

GP 2.6 Manage configurations

GP 2.7 Identify and involve relevant stakeholders
GP 2.8 Monitor and control the process

GP 2.9 Objectively evaluate adherence

GP 2.10 Review status with higher level management

GG 3 Institutionalize a defined process
GP 3.1 Establish a defined process

GP 3.2 Collect improvement information

GG 4 Institutionalize a quantitatively managed process
GP 4.1 Establish quantitative objectives for the process

GP 4.2 Stabilize subprocess performance

GG 5 Institutionalize an optimizing process
GP 5.1 Ensure continuous process improvement

GP 5.2 Correct root causes of problems

The staged CMMI model defines the same process areas, goals, and practices as
the continuous model. The primary difference is that the staged model defines five
maturity levels, rather than five capability levels. To achieve a maturity level, the spe-
cific goals and practices associated with a set of process areas must be achieved. The
relationship between maturity levels and process areas is shown in Figure 2.4.

The CMMI—Should We or Shouldn’t We?

The CMM! is a process meta-model. It defines of the software engineers, and the quality of the end
{in over 700 pages) the process characteristics product. No one would argue with these ideas.

that should exist if an organization wants to establish a The detailed requirements of the CMMI should be
software process that is complete. The question that has seriously considered if an organization builds large
been debated for well over a decade is: Is the CMMI complex systems that involve dozens or hundreds of
overkill2 Like most things in life {and in software), the people over many months or years. It may be that the
answer is not a simple yes or no. CMM!I is just right in such situations, if the organizational

The spirit of the CMMI should always be adopted. Atthe culture is amenable to standard process models and
risk of oversimplification, it argues that software management is committed to making it a success.
development must be taken seriously—it must be planned However, in other situations, the CMMI may simply be too
thoroughly; it must be controlled uniformly; it must be much for an organization to successfully assimilate. Does
iracked accurately; and it must be conducted professionally. this mean that the CMM! is bad or overly bureaucratic or

Qmust focus on the needs of project stakeholders, the skills old fashioned? No, it does not. It simply means that whotj

CHAPTER 2 A GENERIC VIEW OF PROCESS 63

is right for one company culture may not be right for
another.

The CMMI is a significant achievement in software
engineering. It provides a comprehensive discussion of the
activities and actions that should be present when an

organization builds computer software. Even if a software
organization chooses not to adopt its details, every
software team should embrace its spirit and gain insight
from its discussion of software engineering process and
practice.

Process areas

required to

achieve a

Continuous

process Organizational Innovation and Deployment

Optimizing

maturity level

improvement

Causal Analysis and Resolution

Quantitatively
managed

Quantitative
management

Organizational Process Performance
Quantitative Project Management

Requirements Development
Technical Solution

Product Integration

Verification

Validation

Organizational Process Focus
Organizational Process Definition
Organizational Training
Integrated Project Management
Integrated Supplier Management
Risk Management

Decision Analysis and Resolution
Organizational Environment for Integration
Integrated Teaming

Process

Defined standardization

Requirements Management
Project Planning
Basic Project Monitoring and Control
project Supplier Agreement Management
management Measurement and Analysis
Process and Product Quality Assurance
Configuration Management

Managed

Performed

What is o The software process can be defined as a collection of patterns that define a set of
process activities, actions, work tasks, work products and/or related behaviors [AMB98] re-
pattern? quired to develop computer software. Stated in more general terms, a process pat-

tern provides us with a template—a consistent method for describing an important
characteristic of the software process. By combining patterns, a software team can
construct a process that best meets the needs of a project.

%
e,
POINT
A pattern template
provides a consistent

means for describing o
pattern.

PART ONE THE SOFTWARE PROCESS

ion of Mems is quite 0 cfn‘ferem thing than the repetition of parts. Indeed, the di%em puruvll be.

“Patterns can be defined at any level of abstraction.® In some cases, a pattern might
be used to describe a complete process (e.g., prototyping). In other situations, pat-
terns can be used to describe an important framework activity (e.g., planning) or a
task within a framework activity (e.g., project-estimating).

Ambler [AMB98] has proposed the following template for describing a process
pattern:

Pattern Name. The pattern is given a meaningful name that describes its function
within the software process (e.g., customer-communication)..

Intent. The objective of the pattern is described briefly. For example, the intent of
customer-communication is “to establish a collaborative relationship with the
customer in an effort to define project scope, business requirements, and other
project constraints.” The intent might be further expanded with additional explana-
tory text and appropriate diagrams if required.

Type. The pattern type is specified. Ambler [AMB98] suggests three types:

o Task patterns define a software engineering action or work task that is part of
the process and relevant to successful software engineering practice (e.g.,
requirements gathering is a task pattern).

e Stage patterns define a framework activity for the process. Since a framework
activity encompasses multiple work tasks, a stage pattern incorporates
multiple task patterns that are relevant to the stage (framework activity). An
example of a stage pattern might be communication. This pattern would
incorporate the task pattern requirements gathering and others.

e Phase patterns define the sequence of framework activities that occur with
the process, even when the overall flow of activities is iterative in nature. An
example of a phase pattern might be a spiral model or prototyping.’

Initial Context. The conditions under which the pattern applies are described.
Prior to the initiation of the pattern, we ask (1) what organizational or team-
related activities have already occurred, (2) what is the entry state for the
process, and (3) what software engineering information or project information
already exists.

6 Patterns are applicable to many software engineering activities. Analysis, design, and testing pat-
terns are discussed in Chapters 7, 9, 10, 12, and 14. Patterns and “antipatterns” for project man-
agement activities are discussed in Part 4 of this book.

7 These phase patterns are discussed in Chapter 3.

TESOUFCES O DIOCESS
patfems con be found
at

30 Y

v

PatternsPoge.hind,

CHAPTER 2 A GENERIC VIEW OF PROCESS 65

For-example, the planning pattern (a stage pattern) requires that (1) customers
and software engineers have established a collaborative communication; (2) suc-
cessful completion of a number of task patterns (specified) for the customer-
communication pattern has occurred; and (3) project scope, basic business
requirements, and project constraints are known.

Problem. The problem to be solved by the pattern is described. For example, the
problem to be solved by customer-communication might be described in the fol-
lowing manner: Communication between the developer and the customer is often in-
adequate because an effective format for eliciting information is not established, a
useful mechanism for recording it is not created, and meaningful review is not con-
ducted.

Solution. The implementation of the pattern is described. This section discusses
how the initial state of the process (that exists before the pattern is implemented)
is modified as a consequence the initiation of the pattern. It also describes how
software engineering information or project information that is available before the
initiation of the pattern is transformed as a consequence of the successful execu-
tion of the pattern.

Resulting Context. The conditions that will result once the pattern has been suc-
cessfully implemented are described. Upon completion of the pattern we ask

(1) what organizational or team-related activities must have occurred, (2) what is
the exit state for the process, and (3) what software engineering information or
project information has been developed.

Related Patterns. A list of all process patterns that are directly related to this one
are provided—as a hierarchy or in some other diagrammatic form. For example,
the stage pattern communication encompasses the task patterns project-team
assembly, collaborative-guideline definition, scope-isolation, require-
ments gathering, constraint-description, and mini-spec/model creation.

Known Uses/Examples. The specific instances in which the pattern is applicable
are indicated. For example, communication is mandatory at the beginning of
every software project; it is recommended throughout the software project; and it
is mandatory once the deployment activity is underway.

Process patterns provide an effective mechanism for describing any software
process. The patterns enable a software engineering organization to develop a hier-
archical process description that begins at a high-level of abstraction (a phase pat-
tern). The description is refined into a set of stage patterns that describe framework
activities and then further refined in hierarchical fashion into more detailed task pat-
terns for each stage pattern. Once process patterns have been developed, they can
be reused for the definition of process variants—that is, a customized process model
can be defined by a software team using the patterns as building blocks for the
process model.

66 PART ONE THE SOFTWARE PROCESS

N§i¢/ An Example Process Pattern

The following abbreviated process pattern
describes an approach that may be applicable
when stakeholders have a general idea of what must be
done, but are unsure of specific software requirements.
Pattern name. Prototyping.

Intent. The objective of the pattern is to build a model
(a prototype) that can be assessed iteratively by
stakeholders in an effort to identify or solidify
software requirements.

Type. Phase pattern.

Initial context. The following conditions must be met prior
to the initiation of this pattern: (1) stakeholders have been
identified; (2) a mode of communication between
stakeholders and the software team has been established;
{3) the overriding problem to be solved has been
identified by stakeholders; (4) an inifial understanding of
project scope, basic business requirements, and project
constraints has been developed.

Problem. Requirements are hazy or nonexistent, yet there

\is clear recognition that there is a problem, and the

€.

problem must be addressed with a software solution.
Stakeholders are unsure of what they want; that is, they
cannot describe software requirements in any detail.

Solution. A description of the prototyping process is
presented here. See Chapter 3 for details.

Resulting context. A software prototype that identifies
basic requirements (e.g., modes of interaction,
computational features, processing functions) is
approved by stakeholders. Following this, {1} the
prototype may evolve through a series of increments to
become the production software or {2) the prototype
may be discarded and the production software built
using some other process pattern.

Related patterns. The following patterns are related to
this pattern: customer-communication; iterative
design; iterative development, customer
assessment; requirement extraction.

Known uses/examples. Prototyping is recommended
when requirements are uncertain.

/

The existence of a software process is no guarantee that software will be delivered on
time, that it will meet the customer’s needs, or that it will exhibit the technical charac-

[5]
Ko,

PO :
Assessmen,tx:n. s teristics that will lead to long-term quality characteristics (Chapter 26). Process patterns
to understand mep must be coupled with solid software engineering practice (Part 2 of this book). in addi-

current state of the
software process with
the intent of

tion, the process itself should be assessed to ensure that it meets a set of basic process
criteria that have been shown to be essential for a successful software engineering.®
The relationship between the software process and the methods applied for assess-

mproving I ment and improvement is shown in Figure 2.5. A number of different approaches to
software process assessment have been proposed over the past few decades:
Standard CMMI Assessment Method for Process Improvement (SCAMPI)
What formal provides a five-step process assessment model that incorporates initiating, diagnos-
are u::‘ihc::::l;?r ing, establishing, acting, and learning. The SCAMPI method uses the SEI CMMI
assessing the (Section 2.3} as the basis for assessment [SEIO0].

software process? CMM-Based Appraisal for Internal Process Improvement (CBA IPI) pro-

vides a diagnostic technique for assessing the relative maturity of a software or-

8 The SEI's CMMI [CMMO02] describes the characteristics of a software process and the criteria for a
successful process in voluminous detail.

CHAPTER 2 A GENERIC VIEW OF PROCESS) 67

Is examined by

Identifies
modifications to

Software Process
Assessment

Leads to

Software Process o eGPGPilify
Improvement - mination
Motivates

ganization, using the SEI CMM (a precursor to the CMMI discussed in Section 2.3)
as the basis for the assessment [DUNO1].

SPICE (ISO/IEC15504) standard defines a set of requirements for software
process assessment. The intent of the standard is to assist organizations in develop-
ing an objective evaluation of the efficacy of any defined software process [SPI99].

ISO 9001:2000 for Software is a generic standard that applies to any organi-
zation that wants to improve the overall quality of the products, systems, or services
that it provides. Therefore, the standard is directly applicable to software organiza-
tions and companies.

Because ISO 9001:2000 is widely used on an international scale, we examine it
briefly in the paragraphs that follow. |

“Soltware oryznizations have exhibited significant shortcomings in their ability fo capitalize on the exper

The International Organization for Standardization (ISO) has developed the ISO
9001:2000 standard [ISO00] to define the requirements for a quality management
system (Chapter 26) that will serve to produce higher quality products and thereby
improve customer satisfaction.®

9 Software quality assurance (SQA), an important element of quality management, has been defined
as a umbrella activity that is applied across the entire process framework. It is discussed in detail
in Chapter 26.

An excollent summary
of 150 9001:2000 con-
be fourd ot

hitpe/ /praxions.

PART ONE THE SOFTWARE PROCESS

The underlying strategy suggested by ISO 9001:2000 is described in the following
manner [ISO01]:

ISO 9001:2000 stresses the importance for an organization to identify, implement, man-
age, and continually improve the effectiveness of the processes that are necessary for the
quality management system, and to manage the interactions of these processes in order
to achieve the organization’s objectives . . .

ISO 9001:2000 has adopted a “plan-do-check-act” cycle that is applied to the quality
management elements of a software project. Within a software context, “plan”
establishes the process objectives, activities, and tasks necessary to achieve high-
quality software and resultant customer satisfaction. “Do” implements the software
process (including both framework and umbrella activities). “Check” monitors and
measures the process to ensure that all requirements established for quality man-
agement have been achieved. “Act” initiates software process improvement activi-
ties that continually work to improve the process.

For a detailed discussion of ISO 9001:2000 interested readers should see the
ISO standards themselves or [CIAO1], [KETO1], or [MONO1] for comprehensive
information.

The best software process is one that is close to the people who will be doing the
work. If a software process model has been developed at a corporate or organiza-
tional level, it can be effective only if it is amenable to significant adaptation to meet
the needs of the project team that is actually doing software engineering work. In an
ideal setting, each software engineer would create a process that best fits his or her
needs, and at the same time meets the broader needs of the team and the organiza-
tion. Alternatively, the team itself would create its own process, and at the same time
meet the narrower needs of individuals and the broader needs of the organization.
Watts Humphrey ([HUM97] and [HUMOO]) argues that it is possible to create a “per-
sonal software process” and/or a “team software process.” Both require hard work,
training and coordination, but both are achievable.'?

stul has simply formed the habit of doing things that unsuccessful people wil

2.6.1 Personal Software Process (PSP)

Every developer uses some process to build computer software. The process may be
haphazard or ad hoc, may change on a daily basis, may not be efficient, effective or
even successful, but a process does exist. Watts Humphrey [HUM97] suggests that in

10 It's worth noting that the proponents of agile software development (Chapter 4) also argue that the
process should remain close to the team. They propose an alternative method for achieving this.

CHAPTER 2 A GENERIC VIEW OF PROCESS 69

order to change an ineffective personal process, an individual must move through
four phases, each requiring training and careful instrumentation. The personal soft-
ware process (PSP) emphasizes personal measurement of both the work product that
is produced and the resultant quality of the work product. In addition, PSP makes the
practitioner responsible for project planning (e.g., estimating and scheduling) and
empowers the practitioner to control the quality of all software work products that
are developed.

The PSP process model defines five framework activities: planning, high-level de-
sign, high-level design review, development, and postmortem.

Planning. This activity isolates requirements and, based on these, develops both
size and resource estimates. In addition, a defect estimate (the number of defects
activities are used projected for the work) is made. All metrics are recorded on worksheets or tem-
during PSP? plates. Finally, development tasks are identified and a project schedule is created.

High-level design. External specifications for each component to be con-
structed are developed and a component design is created. Prototypes are built
when uncertainty exists. All issues are recorded and tracked.

High-level design review. Formal verification methods (Chapter 26) are ap-
plied to uncover errors in the design. Metrics are maintained for all important tasks
and work results.

Development. The component level design is refined and reviewed. Code is
generated, reviewed, compiled, and tested. Metrics are maintained for all impor-
tant tasks and work results.

Postmortem. Using the measures and metrics collected (a substantial amount
of data that should be analyzed statistically), the effectiveness of the process is de-
termined. Measures and metrics should provide guidance for modifying the process

-to improve its effectiveness.

[4
POINT portant, to understand the types of errors that he is likely to make. This is accomplished

PSP emphsizes the through a rigorous assessment activity performed on all work products produced by the
need fo record and software engineer.

analyze the types of PSP represents a disciplined, metrics-based approach to software engineering that
erfors you make, 50 may lead to culture shock for many practitioners. However, when PSP is properly in-

% PSP stresses the need for each software engineer to identify errors early and, as im-

VOU:‘"_‘ di"e"l’.p - troduced to software engineers [HUM96], the resulting improvement in software en-
;::;g»es o eiminate gineering productivity and software quality are significant [FER97]. However, PSP has

not been widely adopted throughout the industry. The reasons, sadly, have more to
do with human nature and organizational inertia than they do with the strengths and
weaknesses of the PSP approach. PSP is intellectually challenging and demands a
level of commitment (by practitioners and their managers) that is not always possi-
ble to obtain. Training is relatively lengthy, and training costs are high. The required
level of measurement is culturally difficult for many software people.

70 PART ONE THE SOFTWARE PROCESS

Can PSP be used as an effective software process at a personal level? The answer
is an unequivocal yes. But even if PSP is not adopted in its entirety, many of the per-
sonal process improvement concepts that it introduces are well worth learning.

2.6.2 Team Software Process (TSP)

Because many industry-grade software projects are addressed by a team of practition-
Ifomaion onbuling ~ €1'S, Wattts Humphrey extended the lessons learned from the introduction of PSP and

bighrperformance proposed a team software process (TSP). The goal of TSP is to build a “self-directed” proj-
teoms using TSP ond P p g p
WPanbeobminedet €CL team that organizes itself to produce high-quality software. Humphrey [HUM98] de-
www.sol.ons, fines the following objectives for TSP:

edo/tsp/.

o Build self-directed teams that plan and track their work, establish goals, and
own their processes and plans. These can be pure software teams or inte-
grated product teams (IPT) of 3 to about 20 engineers.

e Show managers how to coach and motivate their teams and how to help
them sustain peak performance.

o Accelerate software process improvement by making CMM level 5 behavior
normal and expected.

e Provide improvement guidance to high-maturity organizations.

e Facilitate university teaching of industrial-grade team skills.

e A self-directed team has a consistent understanding of its overall goals and objectives.
AD VICE’ It defines roles and responsibilities for each team member; tracks quantitative project
To form a seffdiected data (about productivity and quality); identifies a team process that is appropriate for
:;‘;z ﬂ ”::;r:’ ;Zif"b the project and a strategy for implementing the process; defines local standards that

are applicable to the team’s software engineering work; continually assesses risk and

and communicate well
externally. reacts to it; and tracks, manages, and reports project status.

of ism. Getting them to ploy as o team is another story.”

[¢
mentation, integration and test, and postmortem. Like their counterparts in PSP
POINT & P P

TSP scipts efne (note that terminology is somewhat different), these activities enable the team to

elements of the feam plan, design, and construct software in a disciplined manner while at the same time

process and activities quantitatively measuring the process and the product. The postmortem sets the
that occur within he ~ stage for process improvements.

process. TSP makes use of a wide variety of scripts, forms, and standards that serve to

guide team members in their work. Scripts define specific process activities (i.e., proj-

-ect launch, design, implementation, integration and testing, and postmortem) and

other more detailed work functions (e.g., development planning, requirements de-

velopment, software configuration management, and unit test) that are part of the

team process. To illustrate, consider the initial process activity—project launch.

% TSP defines the following framework activities: launch, high-level design, imple-

Information on the
saftware process
doshboord—a PSP
and TSP support

CHAPTER 2 A GENERIC VIEW OF PROCESS 71

Each project is “launched” using a sequence of tasks (defined as a script) that en-
ables the team to establish a solid basis for starting the project: The following launch
script (outline only) is recommended [HUMOO]:

e Review project objectives with management and agree on and document
team goals.

e Establish team roles.

¢ Define the team’s development process.

e Make a quality plan and set quality targets.

e Plan for the needed support facilities.

e Produce an overall development strategy.

e Make a development plan for the entire project.

e Make detailed plans for each engineer for the next phase.

e Merge the individual plans into a team plan.

e Rebalance team workload to achieve a minimum overall schedule.

e Assess project risks and assign tracking responsibility for each key risk.
It should be noted that the launch activity can be applied prior to each TSP frame-
work activity noted earlier. This accommodates the iterative nature of many projects
and allows the team to adapt to changing customer needs and lessons learned from
previous activities.

TSP recognizes that the best software teams are self-directed. Team members set
project objectives, adapt the process to meet their needs, have control over sched-
ule, and through measurement and analysis of the metrics collected, work continu-
ally to improve the team'’s approach to software engineering.

Like PSP, TSP is a rigorous approach to software engineering that provides dis-
tinct and quantifiable benefits in productivity and quality. The team must make a full

commitment to the process and must undergo thorough training to ensure that the
approach is properly applied.

The generic process models discussed in the preceding sections must be adapted for
use by a software project team. To accomplish this, process technology tools have been
developed to help software organizations analyze their current process, organize
work tasks, control and monitor progress, and manage technical quality [NEG99).

Process technology tools allow a software organization to build an automated
model of the common process framework, task sets, and umbrella activities dis-
cussed in Section 2.2. The model, normally represented as a network, can then be
analyzed to determine typical workflow and examine alternative process structures
that might lead to reduced development time or cost.

72 PART ONE THE SOFTWARE PROCESS

Once an acceptable process has been created, other process technology tools can
be used to allocate, monitor, and even control all software engineering tasks defined
as part of the process model. Each member of a software team can use such tools to
develop a checklist of work tasks to be performed, work products to be produced,
and quality assurance activities to be conducted. The process technology tool can
also be used to coordinate the use of other computer-aided software engineering

tools that are appropriate for a particular work task.
SOFTWARE TooLs W

a Process Modeling Tools

Q Obijective: If an organization works to the content or description of each process element, and
improve a business (or software) process, it must then manage the process as it is conducted. In some cases,

first understand it. Process modeling tools {also called the process technology tools incorporate standard project

9 p ogy po proj
process fechnology or process management tools) are used ~ management tasks such as estimating, scheduling, fracking
to represent the key elements of a process so that it can be and control.
rep ey p

better understood. Such tools can also provide links to] n
process descripfions that help those involved in the process Representative To?ls.. .

to understand the actions and work tasks that are required Igrak Pro.cess Tools, distributed by Corel Forporahon

to perform it. Process modeling tools provide links fo other (www.igrafx.com/products/process), is a sef of tools

tools that provide support to defined process activities. that enable a team to map, measure, and model the
software process

Mechanics: Tools in this category allow a team to define Objexis Team Portal, developed by Objexis Corporation

the elements of a unique process model {actions, tasks, {(www.objexis.com), provides full process workflow
Qrk products, QA points), provide detailed guidance on definition and control. /

If the process is weak, the end product will undoubtedly suffer. But an obsessive
over-reliance on process is also dangerous. In a brief essay, Margaret Davis [DAV95]
comments on the duality of product and process:

About every ten years give or take five, the software community redefines “the problem”
by shifting its focus from product issues to process issues. Thus, we have embraced struc-
tured programming languages (product) followed by structured analysis methods
(process) followed by data encapsulation (product) followed by the current emphasis on
the Software Engineering Institute’s Software Development Capability Maturity Model
(process) [followed by object-oriented methods, followed by agile software development].

While the natural tendency of a pendulum is to come to rest at a point midway be-
tween two extremes, the software community’s focus constantly shifts because new force
is applied when the last swing fails. These swings are harmful in and of themselves be-
cause they confuse the average software practitioner by radically changing what it means

.

—

Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

CHAPTER 2 A GENERIC VIEW OF PROCESS 73

to perform the job, let alone perform it well. The swings also do not solve “the problem,”
for they are doomed to fail as long as product and process are treated as forming a di-
chotomy instead of a duality.

There is precedence in the scientific community to advance notions of duality when con-
tradictions in observations cannot be fully explained by one competing theory or another.
The dual nature of light, which seems to be simultaneously particie and wave, has been ac-
cepted since the 1920s when Louis de Broglie proposed it. I believe that the observations we
can make on the artifacts of software and its development demonstrate a fundamental du-
ality between product and process. You carr never derive or understand the full artifact, its
context, use, meaning, and worth if you view it as only a process or only a product. . . .

All of human activity may be a process, but each of us derives a sense of self-worth
from those activities that result in a representation or instance that can be used or ap-
preciated either by more than one person, used over and over, or used in some other con-
text not considered. That is, we derive feelings of satisfaction from reuse of our products
by ourselves or others.

Thus, while the rapid assimilation of reuse goals into software development potentially
increases the satisfaction software practitioners derive from their work, it also increases
the urgency for acceptance of the duality of product and process. Thinking of a reusable ar-
tifact as only product or only process either obscures the context and ways to use it or ob-
scures the fact that each use results in product that will, in turn, be used as input to some
other software development activity. Taking one view over the other dramatically reduces
the opportunities for reuse and, hence, loses the opportunity for increasing job satisfaction.

ystem,if it were attuinable, would be a code af once so lexible and minute; as fo
sivable situation a just and fitting rule. But life is too complex te bring:
3ss of human power.” i

Péople derive as much (or more) satisfaction from the creative process as they do
from the end-product. An artist enjoys the brush strokes as much as the framed re-
sult. A writer enjoys the search for the proper metaphor as much as the finished
book. A creative software professional should also derive as much satisfaction from
the process as the end-product.

The work of software people will change in the years ahead. The duality of prod-
uct and process is one important element in keeping creative people engaged as the
transition from programming to software engineering is finalized.

Software engineering is a discipline that integrates process, methods, and tools for the
development of computer software. A number of different process models for software
engineering have been proposed, but all define a set of framework activities, a collec-
tion of tasks that are conducted to accomplish each activity, work products produced

74 PART ONE THE SOFTWARE PROCESS

as a consequence of the tasks, and a set of umbrella activities that span the entire
process. Process patterns can be used to define the characteristics of a process.

The Capability Maturity Model Integration (CMMI) is a comprehensive process
meta-model that describes the specific goals, practices, and capabilities that should
be present in a mature software process. SPICE and other standards define the re-
quirements for conducting an assessment of software process, and the ISO 9001:
2000 standard examines quality management within a process.

Personal and team models for the software process have been proposed. Both
emphasize measurement, planning, and self-direction as key ingredients for a suc-
cessful software process.

The principles, concepts, and methods that enable us to perform the process that
we call software engineering are considered throughout the remainder of this book.

[AMB98] Ambler, S., Process Patterns: Building Large-Scale Systems Using Object Technology,
Cambridge University Press/SIGS Books, 1998.

[BAE98] Baetjer, Jr., H., Software as Capital, IEEE Computer Society Press, 1998, p. 85.

[CIAO1] Cianfrani, C., et al., ISO 9001: 2000 Explained, American Society of Quality, 2001.

[CMMO2] Capability Maturity Model Integration (CMMI), Version 1.1, Software Engineering Insti-
tute, March 2002, available at http://www.sei.cmu.edu/cmmi/.

[DAV95] Davis, M., “Process and Product: Dichotomy or Duality,” Software Engineering Notes,
ACM Press, vol. 20, no. 2, April, 1995, pp. 17-18.

[DUNO1] Dunaway, D., and S. Masters, CMM-Based Appraisal for Internal Process Improvement (CBA
IPI Version 1.2 Method Description, Software Engineering Institute, 2001, can be downloaded at
http://www.sei.cmu.edu/publications/documents/01 reports/01tr033.html.

[ELE98] El Emam, K., J. Drouin, and W. Melo (eds.), SPICE: The Theory and Practice of Software
Process Improvement and Capability Determination, IEEE Computer Society Press, 1998.

[FER97] Ferguson, P., et al., “Results of applying the personal software process,” IEEE Compulter,
vol. 30, no. 5, May 1997, pp. 24-31.

[HUM96] Humphrey, W., “Using a Defined and Measured Personal Software Process,” IEEE Soft-
ware, vol. 13, no. 3, May/June 1996, pp. 77-88. ‘

[HUM97] Humphrey, W., Introduction to the Personal Software Process, Addison-Wesley, 1997.

[HUM98] Humphrey, W., “The Three Dimensions of Process Improvement, Part IlI: The Team
Process,” Crosstalk, April 1998. Available at http://www.stsc.hill.af.mil/ crosstalk/1998/apr/
dimensions.asp

[HUMOO] Humphrey, W., Introduction to the Team Software Process, Addison-Wesley, 2000.

[IEE93] IEEE Standards Collection: Software Engineering, IEEE Standard 610.12-1990, IEEE, 1993.

[(ISO00] ISO 9001:2000 Document Set, International Organization for Standards, 2000,
http://www.iso.ch/iso/en/is09000-14000/is09000/is09000index.html.

[1SO01} “Guidance on the Process Approach to Quality Management Systems,” Document ISO/TC
176/SC 2/N544R, International Organization for Standards, May 2001.

[KETO1] Ketola, J., and K. Roberts, ISO 9001: 2000 in a Nutshell, 2 ed., Paton Press, 2001.

[MONO1] Monnich, H., Jr., and H. Monnich, ISO 9001: 2000 for Small- and Medium-Sized Busi-
nesses, American Society of Quality, 2001.

[NAU69] Naur, P, and B. Randall (eds.), Software Engineering: A Report on a Conference Sponsored
by the NATO Science Committee, NATO, 1969.

[NEG99] Negele, H., “Modeling of Integrated Product Development Processes,” Proc. 9th Annual
Symposium of INCOSE, United Kingdom, 1999.

[PAU93] Paulk, M., et al., Capability Maturity Model for Software, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 1993.

CHAPTER 2 A GENERIC VIEW OF PROCESS 75

[PHIO2] Phillips, M., “CMMI V1.1 Tutorial,” April 2002, available at http://www.sei. cmu.edu/
cmmi/.

[SEI00] SCAMPI, V1.0 Standard CMMI ® Assessment Method for Process Improvement: Method De-
scription, Software Engineering Institute, Technical Report CMU/SEI-2000-TR-009, downioad-
able from http://www.sei.cmu.edu/publications/documents/00.reports/00tr009. html.

[SP199] “SPICE: Software Process Assessment, Part 1: Concepts and Introduction,” Version 1.0,
ISO/IEC JTC1, 1999.

2.1. Consider the framework activity communication. Develop a complete process pattern (this
would be a stage pattern) using the template presented in Section 2.4.

2.2. What is the purpose of process assessment? Why has SPICE been developed as a standard
for process assessment?

2.3. Download the CMMI documentation from the SEI Web site and select a process area other
than project planning. Make a list of specific goals (SG) and the associated specific practices (SP)
defined for the area you have chosen.

2.4. Try to develop a task set for the communication activity.

2.5. Research the CMMI in a bit more detail and discuss the pros and cons of both the contin-
uous and staged CMMI models.

2.6. Describe a process framework in your own words. When we say that framework activities
are applicable to all projects, does this mean that the same work tasks are applied for all proj-
ects, regardless of size and complexity? Explain.

2.7. Umbrella activities occur throughout the software process. Do you think they are applied
evenly across the process, or are some concentrated in one or more framework activities?

2.8. Isthere ever a case when the generic activities of the software engineering process don't ap-
ply? If so, describe it.

2.9. In the introduction to this chapter, Baetjer notes: “The process provides interaction between
users and designers, between users and evolving tools, and between designers and evolving tools
[technology].” List five questions that (a) designers should ask users; (b) users should ask de-
signers; (c) users should ask themselves about the software product that is to be built; and (d) de-
signers should ask themselves about the software product that is to be built and the process that
will be used to build it.

2.10. Figure 2.1 places the three software engineering layers on top of a layer entitled “a quality
focus.” This implies an organization-wide quality program such as Total Quality Management. Do
a bit of research and develop an outline of the key tenets of a Total Quality Management program.

2.11. The use of “scripts” (a required mechanism in TSP) is not universally praised within the soft-
ware community. Make a list of pros and cons regarding scripts and suggest at least two situations
in which they would be useful and another two situations where they might provide less benefit.

2.12. Do some research on PSP and present a brief presentation that indicates the quantitative
benefits of the process.

The current state of software engineering and the software process can best be determined from
monthly publications such as IEEE Software, Computer, and IEEE Transactions on Software Engi-
neering. Industry periodicals such as Application Development Trends and Cutter IT Journal often

76

PART ONE THE SOFTWARE PROCESS

contain articles on software engineering topics. The discipline is “summarized” every year in the
Proceeding of the International Conference on Software Engineering, sponsored by the IEEE and
ACM, and is discussed in depth in journals such as ACM Transactions on Software Engineering
and Methodology, ACM Software Engineering Notes, and Annals of Software Engineering. Thousands of
Web pages are dedicated to software engineering and the software process.

Many books addressing the software process and software engineering have been published
in recent years. Some present an overview of the entire process, while others delve into a few
important topics to the exclusion of others. Among the more popular offerings (in addition to
this book!) are:

Abran, A., and J. Moore, SWEBOK: Guide to the Software Engineering Body of Knowledge, 1IEEE,
2002.

Ahern, D., et al., CMMI Distilled, Addison-Wesley, 2001.

Chrisis, B., et al., CMMI: Guidelines for Process Integration and Product Improvement, Addison-
Wesley 2003.

Christensen, M., and R. Thayer, A Project Manager’s Guide to Software Engineering Best Prac-
tices, IEEE-CS Press (Wiley), 2002.

Glass, R., Fact and Fallacies of Software Engineering, Addison-Wesley, 2002.

Hunter, R., and R. Thayer (eds), Software Process Improvement, IEEE-CS Press (Wiley), 2001.
Persse, J., Implementing the Capability Maturity Model, Wiley, 2001.

Pfleeger, S., Software Engineering: Theory and Practice, 2nd ed., Prentice-Hall, 2001.

Potter, N., and M. Sakry, Making Process Improvement Work, Addison-Wesley, 2002.
Sommerville, 1., Software Engineering, 6th ed., Addison-Wesley, 2000.

On the lighter side, a book by Robert Glass (Software Conflict, Yourdon Press, 1991) presents
amusing and controversial essays on software and the software engineering process. Yourdon
(Death March Projects, Prentice-Hall, 1997) discusses what goes wrong when major software
projects fail and how to avoid these mistakes.

Garmus (Measuring the Software Process, Prentice-Hall, 1995) and Florac and Carlton (Mea-
suring the Software Process, Addison-Wesley, 1999) discuss the use of mea-surement as a means
for statistically assessing the efficacy of any software process.

A wide variety of software engineering standards and procedures have been published over
the past decade. The IEEE Software Engineering Standards contains many different standards
that cover almost every important aspect of the technology. The ISO 9001:2000 document set
provides guidance for software organizations that want to improve their quality management
activities. Other software engineering standards can be obtained from the Department of De-
fense, the FAA, and other government and nonprofit agencies. Fairclough (Software Engineering
Guides, Prentice-Hall, 1996) provides a detailed reference to software engineering standards
produced by the European Space Agency (ESA).

A wide variety of information sources on software engineering and the software process are
available on the Internet. An up-to-date list of World Wide Web references that are relevant to
the software process can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

Ky ,
CONCEPTS

AOSD model
CBD model
concurrent

development

evolutionaryprocess

formal methods
incremental process
proscriptive models
prototyping

RAD model

spiral model
Unified Process
waterfall model

PROCESS
MODELS

rescriptive process models were originally proposed to bring order to the
chaos of software development. History has indicated that these conven-
tional models have brought a certain amount of useful structure to soft-
ware engineering work and have provided a reasonably effective roadmap for
software teams. However, software engineering work and the product that it pro-
duces remain on “the edge of chaos” [NOGOO].
In an intriguing paper on the strange relationship between order and chaos in
the software world, Nogueira and his colleagues [NOGOO} state:

The edge of chaos is defined as “a natural state between order and chaos, a grand
compromise between structure and surprise” [KAU95]. The edge of chaos can be vi-
sualized as an unstable, partially structured state. . . . It is unstable because it is con-
stantly attracted to chaos or to absolute order.

We have the tendency to think that order is the ideal state of nature. This could be
a mistake. Research . . . supports the theory that operation away from equilibrium gen-
erates creativity, self-organized processes, and increasing returns [ROO96]. Absolute
order means the absence of variability, which could be an advantage under unpre-
dictable environments. Change occurs when there is some structure so that the
change can be organized, but not so rigid that it cannot occur. Too much chaos, on
the other hand, can make coordination and coherence impossible. Lack of structure
does not always mean disorder.

left uncontrolled, become quite

ferred to prescriptive -
“rigorous process models”
enccmpass the capabilities

agers adapta presert cess
needs and then follow it. In uddi

who have requested the software have a
play as the process model is followed.
Why is it important? Because it provides star
bility, control, and organization fo an activi

77

78

PART ONE THE SOFTWARE PROCESS

%N
o,
POINT
A prescriptive process
model populates a
process framework
with explicit fask
sets for software
engineering acfions.

The philosophical implications of this argument are significant for software engi-
neering. If prescriptive process models’ strive for structure and order, are they inap-
propriate for a software world that thrives on change? Yet, if we reject conventional
process models (and the order they imply) and replace them with something less
structured, do we make it impossible to achieve coordination and coherence in soft-
ware work?

There are no easy answers to these questions, but there are alternatives available
to software engineers. In this chapter we examine the prescriptive process approach
in which order and project consistency are dominant issues. In Chapter 4 we exam-
ine the agile process approach in which self-organization, collaboration, communi-
cation, and adaptability dominate the process philosophy.

Every software engineering organization should describe a unique set of framework
activities (Chapter 2) for the software process(es) it adopts. It should populate each
framework activity with a set of software engineering actions, and define each ac-
tion in terms of a task set that identifies the work (and work products) to be accom-
plished to meet the development goals. It should then adapt the resultant process
model to accommodate the specific nature of each project, the people who will do
the work, and the environment in which the work will be conducted. Regardless of
the process model that is selected, software engineers have traditionally chosen a
generic process framework that encompasses the following framework activities:
communication, planning, modeling, construction, and deployment.

oF going forward, but only one woy of standing still.”

In the sections that follow, we examine a number of prescriptive software process
models. We call them “prescriptive” because they prescribe a set of process elements—
framework activities, software engineering actions, tasks, work products, quality as-

1 Prescriptive process models are often referred to as “conventional” process models.

anc:‘

Even though a process
is prescriptive, don’t
assume that it is stafic.
Prescriptive models
should be adapted to
the people, the
problem, and the
project.

CHAPTER 3 PROCESS MODELS 79

surance, and change control mechanisms for each project. Each process model also
prescribes a workflow—that is, the manner in which the process elements are inter-
related to one another.

All software process models can accommodate the generic framework activities
that have been described in Chapter 2, but each applies a different emphasis to these
activities and defines a workflow that invokes each framework activity (as well as
software engineering actions and tasks) in a different manner.

Why does
@ the water-
fall model
sometimes fail?

There are times when the requirements of a problem are reasonably well understood—
when work flows from communication through deployment in a reasonably linear
fashion. This situation is sometimes encountered when well-defined adaptations or
enhancements to an existing system must be made (e.g., an adaptation to account-
ing software that has been mandated because of changes to government regula-
tions). It may also occur in a limited number of new development efforts, but only
when requirements are well-defined and reasonably stable.)

The waterfall model, sometimes called the classic life cycle, suggests a systematic,
sequential approach? to software development that begins with customer specifica-
tion of requirements and progresses through planning, modeling, construction, and
deployment, culminating in on-going support of the completed software.

The waterfall model is the oldest paradigm for software engineering. However,
over the past two decades, criticism of this process model has caused even ardent
supporters to question its efficacy [HAN95]. Among the problems that are sometimes
encountered when the waterfall model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes. Al-
though the linear model can accommodate iteration, it does so indirectly. As
a result, changes can cause confusion as the project team proceeds.

m The waterfall model

—1 Communication
project initiation
requirements gathering

Planni
es“”‘°":"99 Modeling Construction | |
scheduling analysis yment
ki design code , .
tracking test elivery
support

feedback

2 Although the original waterfall model proposed by Winston Royce [ROY70] made provision for
“feedback loops,” the vast majority of organizations that apply this process model treat it as if it
were strictly linear.

80

PART ONE THE SOFTWARE PROCESS

2. ltis often difficult for the customer to state all requirements explicitly. The
waterfall model requires this and has difficulty accommodating the natural
uncertainty that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will
not be available until late in the project time-span. A major blunder, if unde-
tected until the working program is reviewed, can be disastrous.

In an interesting analysis of actual projects, Bradac [BRA94] found that the linear na-
ture of the waterfall model leads to “blocking states” in which some project team mem-
bers must wait for other members of the team to complete dependent tasks. In fact, the
time spent waiting can exceed the time spent on productive work! The blocking state
tends to be more prevalent at the beginning and end of a linear sequential process.

Today, software work is fast-paced and subject to a never-ending stream of changes
(to features, functions, and information content). The waterfall model is often inappro-
priate for such work. However, it can serve as a useful process model in situations
where requirements are fixed and work is to proceed to completion in a linear manner.

%N
N
POINT
The incremental model
delivers a series of
releases, called
increments, that
provide progressively
more functionality for
the customer os each
increment is delivered.

There are many situations in which initial software requirements are reasonably
well-defined, but the overall scope of the development effort precludes a purely lin-
ear process. In addition, there may be a compelling need to provide a limited set of
software functionality to users quickly and then refine and expand on that function-
ality in later software releases. In such cases, a process model that is designed to
produce the software in increments is chosen.

3.3.1 The Incremental Model

The incremental model combines elements of the waterfall model applied in an iterative
fashion. Referring to Figure 3.2, the incremental model applies linear sequences in a
staggered fashion as calendar time progresses. Each linear sequence produces de-
liverable “increments” of the software [MCD93]. For example, word-processing soft-
ware developed using the incremental paradigm might deliver basic file management,
editing, and document production functions in the first increment; more sophisticated
editing, and document production capabilities in the second increment; spelling and
grammar checking in the third increment; and advanced page layout capability in the
fourth increment. It should be noted that the process flow for any increment may incor-
porate the prototyping paradigm discussed in Section 3.4.1. '

When an incremental model is used, the first increment is often a core product.
That is, basic requirements are addressed, but many supplementary features (some

CHAPTER 3 PROCESS MODELS 81

The
incremental
model

Cova

If your customer
demands delivery by o
date that is impossible
to meef, suggest defiv-
ering one or more
increments by that date
and the rest of the
software (additional
increments) later.

D Communication

D Planning
g

L . . .

Maodeling {analysis, design
‘E 9 fancly. orl increment # n
- [8 Construction (code, test]
T
5 . Deployment (delivery, feedback)
z
3 .. delivery of
§ increment # 2 ® nth increment
€
€
S
. delivery of
g 2nd increment
" delivery of
1st increment
Project Calendar Time

known, others unknown) remain undelivered. The core product is used by the cus-
tomer (or undergoes detailed evaluation). As a result of use and/or evaluation, a
plan is developed for the next increment. The plan addresses the maodification of the
core product to better meet the needs of the customer and the delivery of additional
features and functionality. This process is repeated following the delivery of each in-
crement, until the complete product is produced.

The incremental process model, like prototyping and other evolutionary ap-
proaches, is iterative in nature. But unlike prototyping, the incremental model fo-
cuses on the delivery of an operational product with each increment. Early
increments are “stripped down” versions of the final product, but they do provide ca-
pability that serves the user and also provides a platform for evaluation by the user.?

Incremental development is particularly useful when staffing is unavailable for a
complete implementation by the business deadline that has been established for the
project. Early increments can be implemented with fewer people. If the core prod-
uct is well received, additional staff (if required) can be added to implement the next
increment. In addition, increments can be planned to manage technical risks. For
example, a major system might require the availability of new hardware that is un-
der development and whose delivery date is uncertain. It might be possible to plan
early increments in a way that avoids the use of this hardware, thereby enabling
partial functionality to be delivered to end-users without inordinate delay.

3.3.2 The RAD Model

Rapid Application Development (RAD) is an incremental software process model that
emphasizes a short development cycle. The RAD model is a “high-speed” adaptation

3 Itisimportant to note that an incremental philosophy is also used for all “agile” process models dis-
cussed in Chapter 4.

82

PART ONE THE SOFTWARE PROCESS

of the waterfall model, in which rapid development is achieved by using a component-
based construction approach. If requirements are well understood and project scope
is constrained,* the RAD process enables a development team to create a “fully func-
tional system” within a very short time period (e.g., 60 to 90 days) [MAR91].

Like other process models, the RAD approach maps into the generic framework
activities presented earlier. Communication works to understand the business prob-
lem and the information characteristics that the software must accommodate. Plan-
ning is essential because multiple software teams work in parallel on different system
functions. Modeling encompasses three major phases—business modeling, data
modeling and process modeling—and establishes design representations that serve
as the basis for RAD’s construction activity. Construction emphasizes the use of pre-
existing software components and the application of automatic code generation. Fi-
nally, deployment establishes a basis for subsequent iterations, if required [KER94].

The RAD process model is illustrated in Figure 3.3. Obviously, the time constraints
imposed on a RAD project demand “scalable scope” [KER94]. If a business applica-
tion can be modularized in a way that enables each major function to be completed

The RAD model

Team # 2

business modeling
process ing |
——

Team # 1

60 - 90 days

4 These conditions are by no means guaranteed. In fact, many software projects have poorly defined
requirements at the start. In such cases prototyping or evolutionary approaches (Section 3.4) are
much better process options. See [REI95].

What are the
@ drawbacks of
the RAD model?

[/
LY

POINT

Evolutionary process
models produce an
increasingly more
complete version of
the software with each
iteration.

ﬁpwc:‘

When your customer
has a legitimate need
but s clueless about
the details, develop a
prototype as a first
step.

CHAPTER 3 PROCESS MODELS 83

in less than three months (using the approach described above), it is a candidate for
RAD. Each major function can be addressed by a separate RAD team and then inte-
grated to form a whole.

Like all process models, the RAD approach has drawbacks [BUT94]: (1) for large, but
scalable projects, RAD requires sufficient human resources to create the right number
of RAD teams; (2) if developers and customers are not committed to the rapid-fire ac-
tivities necessary to complete the system in a much abbreviated time frame, RAD proj-
ects will fail; (3) if a system cannot be properly modularized, building the components
necessary for RAD will be problematic; (4) if high performance is an issue, and per-
formance is to be achieved through tuning the interfaces to system components, the
RAD approach may not work; and (5) RAD may not be appropriate when technical risks
are high (e.g., when a new application makes heavy use of new technology).

Software, like all complex systems, evolves over a period of time [GIL88]. Business
and product requirements often change as development proceeds, making a
straight-line path to an end product unrealistic; tight market deadlines make com-
pletion of a comprehensive software product impossible, but a limited version must
be introduced to meet competitive or business pressure; a set of core product or sys-
tem requirements is well understood, but the details of product or system extensions
have yet to be defined. In these and similar situations, software engineers need a
process model that has been explicitly designed to accommodate a product that
evolves over time.

Evolutionary models are iterative. They are characterized in a manner that en-
ables software engineers to develop increasingly more complete versions of the
software.

3.4.1 Prototyping

Often, a customer defines a set of general objectives for software, but does not iden-
tify detailed input, processing, or output requirements. In other cases, the developer
may be unsure of the efficiency of an algorithm, the adaptability of an operating sys-
tem, or the form that human-machine interaction should take. In these, and many
other situations, a prototyping paradigm may offer the best approach.

Although prototyping can be used as a standalone process model, it is more com-
monly used as a technique that can be implemented within the context of any one
of the process models noted in this chapter. Regardless of the manner in which it is
applied, the prototyping paradigm assists the software engineer and the customer to
better understand what is to be built when requirements are fuzzy.

The prototyping paradigm (Figure 3.4) begins with communication. The software
engineer and customer meet and define the overall objectives for the software, iden-
tify whatever requirements are known, and outline areas where further definition is

84 PART ONE THE SOFTWARE PROCESS

The proto-
typing model

Communication

Modeling
Quick design

Deployment
Delivery
& Feedback

Construction
of

prototype

mandatory. A prototyping iteration is planned quickly and modeling (in the form of
a “quick design”) occurs. The quick design focuses on a representation of those as-
pects of the software that will be visible to the customer/end-user (e.g., human in-
terface layout or output display formats). The quick design leads to the construction
of a prototype. The prototype is deployed and then evaluated by the customer/user.
Feedback is used to refine requirements for the software. Iteration occurs as the pro-
totype is tuned to satisfy the needs of the customer, while at the same time en-
abling the developer to better understand what needs to be done.

Ideally, the prototype serves as a mechanism for identifying software require-
ments. If a working prototype is built, the developer attempts to make use of exist-
ing program fragments or applies tools (e.g., report generators, window managers,
etc.) that enable working programs to be generated quickly.

But what do we do with the prototype when it has served the purpose described
above? Brooks [BRO75] provides one answer:

In most projects, the first system built is barely usable. It may be too slow, too big, awk-
ward in use or all three. There is no alternative but to start again, smarting but smarter,
and build a redesigned version in which these problems are solved. . . . When a new sys-
tem concept or new technology is used, one has to build a system to throw away, for even
the best planning is not so omniscient as to get it right the first time. The management
question, therefore, is not whether to build a pilot system and throw it away. You will do
that. The only question is whether to plan in advance to build a throwaway, or to prom-
ise to deliver the throwaway to customers.

The prototype can serve as “the first system,” the one that Brooks recommends
we throw away. But this may be an idealized view. It is true that both customers and
developers like the prototyping paradigm. Users get a feel for the actual system, and

CHAPTER 3 PROCESS MODELS 85

developers get to build something immediately. Yet, prototyping can be problematic
for the following reasons:

1. The customer sees what appears to be a working version of the software, un-
aware that the prototype is held together “with chewing gum and baling wire,”
unaware that in the rush to get it working we haven't considered overall soft-
ware quality or long-term maintainability. When informed that the product
must be rebuilt so that high-levels of quality can be maintained, the customer
cries foul and demands that “a few fixes” be applied to make the prototype a

EonaB

Resist pressure fo working product. Too often, software development management relents.
extend g rough . o

profofype Wg p 2. The developer often makes implementation compromises in order to get a
production product. prototype working quickly. An inappropriate operating system or program-
Quality almost always ming language may be used simply because it is available and known; an in-
suffers as a result

efficient algorithm may be implemented simply to demonstrate capability.

After a time, the developer may become comfortable with these choices and
forget all the reasons why they were inappropriate. The less-than-ideal
choice has now become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for soft-
ware engineering. The key is to define the rules of the game at the beginning; that is,
the customer and developer must both agree that the prototype is built to serve as a
mechanism for defining requirements. It is then discarded (at least in part), and the
actual software is engineered with an eye toward quality.

SAFEHOME

éering group at CPI Corporation, a
npany that makes consumer products for
ial use. :

've got a lot of work to do fo simply define
ut I'd like you guys fo begin thinking about

) you're going to approach the software part of this

' Seems like we've been pretty disorganized in our
opproach to software in the past.

$decting a Process Model, Part 1

Ed: | don’t know, Doug. Weaiwcys got .
door.
Doug: True, but not without a Hofgﬂaf an
project looks like it's bigger and more mpkz
anything we've done in the post. :
Jamie: Doesn't look that hard, bullmgrae
hoc approach fo past projects won't work here,
particularly if we have a very hght hmehne,
Doug (smiling): | want to be a bit more pro
in our approach. | went to o short course last wee
learned a lot about software ongineenng . good
We need a process here.

Jamie (with a frown): My pb is fo build comw#er
programs, not push paper around.

Doug: Give it a chance before you go negative on me.
Here’s what | mean. [Doug proceeds to describe the

86 PART ONE THE SOFTWARE PROCESS

duuiiaedm Chapter 2 and the .Poug: | agree. e i

models presenfed o this point.] Ed: That prototyping approoch seems OK A Ict

16 me that a linear model is what we do here anyway. '

: y have all requirements up front vined: That's o problem. I ied that

g ! problem. I'm worri it doesn"l:
MM notlikely. provide us with enough structire.

o mmodd’“’"d’w"ym” Doug: Not fo worry. We've got plenty of other opfions

for building an inventory and | want you guys to pick what's best for):
it's just not right for best for the project. W

3.4.2 The Spiral Model

The spiral model, originally proposed by Boehm [BOE88], is an evolutionary software
process model that couples the iterative nature of prototyping with the controlled
and systematic aspects of the waterfall model. It provides the potential for rapid de-
velopment of increasingly more complete versions of the software. Boehm [BOEO1]
describes the model in the following manner:

The spiral development model is a risk-driven process model generator that is used to
guide multi-stakeholder concurrent engineering of software intensive systems. It has two
main distinguishing features. One is a cyclic approach for incrementally growing a sys-
tem’s degree of definition and implementation while decreasing its degree of risk. The
other is a set of anchor point milestones for ensuring stakeholder commitment to feasible
and mutually satisfactory system solutions.

Using the spiral model, software is developed in a series of evolutionary releases. Dur-
ing early iterations, the release might be a paper model or prototype. During later it-
erations, increasingly more complete versions of the engineered system are produced.
:‘?)‘ A spiral model is divided into a set of framework activities defined by the software
engineering team. For illustrative purposes, we use the generic framework activities

POINT °© am. Ve _
discussed earlier.® Each of the framework activities represent one segment of the spi-

The spiral model can) N) . .
ral path illustrated in Figure 3.5. As this evolutionary process begins, the software

be adapted to apply

throughout the entire team performs activities that are implied by a circuit around the spiral in a clockwise
lfe cycle of an direction, beginning at the center. Risk (Chapter 25) is considered as each revolution
applicaion, from is made. Anchor point milestones—a combination of work products and conditions
concept development

that are attained along the path of the spiral—are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a product
specification; subsequent passes around the spiral might be used to develop a pro-
totype and then progressively more sophisticated versions of the software. Each pass

to maintenance.

5 The spiral model discussed in this section is a variation on the model proposed by Boehm. For fur-
ther information on the original spiral model, see [BOE88]. More recent discussion of Boehm's spi-
ral model can be found in [BOE98].

CHAPTER 3 PROCESS MODELS 87

A typical
spiral model

Useful information
gbout the spiral mode!
con be obtained ot
www.sel.ang.
odu/cbs/
spiral2000/.

ﬁpwc:‘

If your management
demands fixed-budget
development
(generally a bad idea),
the spiral can be a
problem: as each
circuit is completed,
project cost s revisited
ond revised.

Planning
estimation
scheduling
risk analysis

Communication
Modeling

analysis
design

Deployment

Construction
code
test

delivery
feedback

through the planning region results in adjustments to the project plan. Cost and
schedule are adjusted based on feedback derived from the customer after delivery.
In addition, the project manager adjusts the planned number of iterations required
to complete the software.

Unlike other process models that end when software is delivered, the spiral model
can be adapted to apply throughout the life of the computer software. Therefore, the first
circuit around the spiral might represent a “concept development project” which starts
at the core of the spiral and continues for multiple iterations® until concept development
is complete. If the concept is to be developed into an actual product, the process pro-
ceeds outward on the spiral and a “new product development project” commences. The
new product will evolve through a number of iterations around the spiral. Later, a cir-
cuit around the spiral might be used to represent a “product enhancement project.” In
essence, the spiral, when characterized in this way, remains operative until the software
is retired. There are times when the process is dormant, but whenever a change is ini-
tiated, the process starts at the appropriate entry point (e.g., product enhancement).

_The spiral model is a realistic approach to the development of large-scale systems
and software. Because software evolves as the process progresses, the developer
and customer better understand and react to risks at each evolutionary level. The
spiral model uses prototyping as a risk reduction mechanism but, more importantly,
enables the developer to apply the prototyping approach at any stage in the evolu-
tion of the product. It maintains the systematic stepwise approach suggested by the
classic life cycle but incorporates it into an iterative framework that more realistically
reflects the real world. The spiral model demands a direct consideration of technical

6 The arrows pointing inward along the axis separating the deployment region from the communica-
tion region indicate a potential for local iteration along the same spiral path.

88

CovaP

The concurrent mode/
Is often more appro-
priate for system engi-
neering projects
(Chapter 6) where
different engineering
feams are involved.

PART ONE THE SOFTWARE PROCESS

risks at all stages of the project and, if properly applied, should reduce risks before
they become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to
convince customers (particularly in contract situations) that the evolutionary ap-
proach is controllable. It demands considerable risk assessment expertise and relies
on this expertise for success. If a major risk is not uncovered and managed, prob-
lems will undoubtedly occur.

3.4.3 The Concurrent Development Model

The concurrent development model, sometimes called concurrent engineering, can be
represented schematically as a series of framework activities, software engineering
actions and tasks, and their associated states. For example, the modeling activity de-
fined for the spiral model is accomplished by invoking the following actions: proto-
typing and/or analysis modeling and specification and design.”

Figure 3.6 provides a schematic representation of one software engineering task
within the modeling activity for the concurrent process model. The activity—modeling—
may be in any one of the states® noted at any given time. Similarly, other activities or
tasks (e.g., communication or construction) can be represented in an analogous
manner. All activities exist concurrently but reside in different states. For example,
early in a project the communication activity (not shown in the figure) has completed
its first iteration and exists in the awaiting changes state. The modeling activity
which existed in the none state while initial communication was completed, now
makes a transition into the under development state. If, however, the customer in-
dicates that changes in requirements must be made, the modeling activity moves
from the under development state into the awaiting changes state.

'The concurrent process model defines a series of events that will trigger transi-
tions from state to state for each of the software engineering activities, actions, or
tasks. For example, during early stages of design (a software engineering action that
occurs during the modeling activity), an inconsistency in the analysis model is un-
covered. This generates the event analysis model correction which will trigger the
analysis action from the done state into the awaiting changes state.

The concurrent process model is applicable to all types of software development
and provides an accurate picture of the current state of a project. Rather than con-
fining software engineering activities, actions, and tasks to a sequence of events, it
defines a network of activities. Each activity, action, or task on the network exists
simultaneously with other activities, actions, or tasks. Events generated at one point
in the process network trigger transitions among the states.

7 It should be noted that analysis and design are complex actions that require substantial discussion.
Part 2 of this book considers these topics in detail.
8 A state is some externally observable mode of behavior.

CHAPTER 3 PROCESS MODELS 89

One element of
the concurrent
process model

None

Modeling activity

Represents the state
Under of a software engineering

development

Awaiting
changes

Under review

Under
revision

Baselined

3.4.4 A Final Comment on Evolutionary Processes

We have already noted that modern computer software is characterized by con-
tinual change, by very tight timelines, and by an emphatic need for customer/user
satisfaction. In many cases, time-to-market is the most important management
requirement. If a market window is missed, the software project itself may be
meaningless.’

Evolutionary process models were conceived to address these issues, and yet, as
a general class of process models, they too have weaknesses. These are summarized
by Nogueira and his colleagues [NOGO0O]:)

9 Itis important to note, however, that being the first to reach a market is no guarantee of success.
In fact, many very successful software products have been second or even third to reach the mar-
ket (learning from the mistakes of their predecessors).

90 PART ONE THE SOFTWARE PROCESS

Despite the unquestionable benefits of evolutionary software processes, we have some
concerns. The first concern is that prototyping [and other more sophisticated evolution-
ary processes] poses a problem to project planning because of the uncertain number of
cycles required to construct the product. Most project management and estimation tech-
niques are based on linear layouts of activities, so they do not fit completely.

Second, evolutionary software processes do not establish the maximum speed of the
evolution. If the evolutions occur too fast, without a period of relaxation, it is certain that
the process will fall into chaos. On the other hand, if the speed is too slow then produc-
tivity could be affected. . . .

Third, software processes should be focused on flexibility and extensibility rather than
on high quality. This assertion sounds scary. However, we should prioritize the speed of
the development over zero defects. Extending the development in order to reach high
quality could result in a late delivery of the product, when the opportunity niche has dis-
appeared. This paradigm shift is imposed by the competition on the edge of chaos.

Indeed, a software process that focuses on flexibility, extensibility, and speed of de-
velopment over high quality does sound scary. And yet, this idea has been proposed
by a number of weli-respected software engineering experts (e.g., [YOU95], [BAC97]).

The intent of evolutionary models is to develop high-quality software'® in an iter-
ative or incremental manner. However, it is possible to use an evolutionary process
to emphasize flexibility, extensibility, and speed of development. The challenge for
software teams and their managers is to establish a proper balance between these
critical project and product parameters and customer satisfaction (the ultimate ar-
biter of software quality).

SAFEHOME

A selactlug a Process Model, Part 2

Vinod: | agree. We deliver an incremy
customer feedback, replan, and then &
increment. It also fits info the neture
can have something on the market-k
. m engmeermg monoger Doug functionality with each version, er, i
Lee: Wait a minute, did you say

plan with each tour around
great, we need one plon,

stick fo it. :

Doug: That's old school fhmk{
we've got fo keep it real. | su
the plan as we learn more ondl @

10 In this context, software quality is defined quite broadly to encompass not only customer satisfac-
tion, but also a variety of technical criteria discussed in Chapter 26.

Useful information on
component-based
development con be
obtuined ot

CHAPTER 3 PROCESS MCDELS 91

Wﬁﬁﬁp@mfo‘a plan if it Doug (smiling): Then you'llhe
! buddy. , j

ppose so, but senior management's
ﬁpywcqufmed plan,

Special process models take on many of the characteristics of one or more of the con-
ventional models presented in the preceding sections. However, specialized models
tend to be applied when a narrowly defined software engineering approach is chosen.!

3.5.1 Component-Based Development

Commercial off-the-shelf (COTS) software components, developed by vendors who
offer them as products, can be used when software is to be built. These components
provide targeted functionality with well-defined interfaces that enable the compo-
nent to be integrated into the software.

The component-based development model (Chapter 30) incorporates many of the
characteristics of the spiral model. It is evolutionary in nature [NIE92], demanding an
iterative approach to the creation of software. However, the model composes appli-
cations from prepackaged software components.

Modeling and construction activities begin with the identification of candidate com-
ponents. These components can be designed as either conventional software modules
or object-oriented classes or packages'? of classes. Regardless of the technology that
is used to create the components, the component-based development model incorpo-
rates the following steps (implemented using an evolutionary approach):

e Available component-based products are researched and evaluated for the
application domain in question.

e Component integration issues are considered.

e A software architecture (Chapter 10) is designed to accommodate the
components.

e Components (Chapter 11) are integrated into the architecture.

o Comprehensive testing (Chapters 13 and 14) is conducted to ensure proper
functionality.

11 In some cases, these specialized process models might better be characterized as a collection of
techniques or a methodology for accomplishing a specific software development goal. However,
they do imply a process.

12 Object-oriented technology is discussed through Part 2 of this book. In this context, a class encap-
sulates a set of data and the procedures that process the data. A package of classes is a collection
of related classes that work together to achieve some end result.

92

@ If formal
methods can
demonstrate
software
correctness, why

is it they are not
widely used?

PART ONE THE SOFTWARE PROCESS

The component-based development model leads to software reuse, and reusabil-
ity provides software engineers with a number of measurable benefits. Based on
studies of reusability, QSM Associates, Inc. reports that component-based develop-
ment leads to a 70 percent reduction in development cycle time; an 84 percent re-
duction in project cost; and a productivity index of 26.2, compared to an industry
norm of 16.9 [YOU94]. Although these results are a function of the robustness of the
component library, there is little question that the component-based development
model provides significant advantages for software engineers.

3.5.2 The Formal Methods Model

The formal methods model (Chapter 28) encompasses a set of activities that leads to
formal mathematical specification of computer software. Formal methods enable a
software engineer to specify, develop, and verify a computer-based system by ap-
plying a rigorous, mathematical notation. A variation on this approach, called clean-
room software engineering [MIL87, DYE92], is currently applied by some software
development organizations and is discussed in Chapter 29.

sier o write an incorrect program than understand a correct one.”

When formal methods are used during development, they provide a mechanism
for eliminating many of the problems that are difficult to overcome using other soft-
ware engineering paradigms. Ambiguity, incompleteness, and inconsistency can be
discovered and corrected more easily—not through ad hoc review, but through the
application of mathematical analysis. When formal methods are used during design,
they serve as a basis for program verification and therefore enable the software en-
gineer to discover and correct errors that might otherwise go undetected.

Although not a mainstream approach, the formal methods model offers the prom-
ise of defect-free software. Yet, concern about its applicability in a business envi-
ronment has been voiced:

e The development of formal models is currently quite time-consuming and
expensive.

e Because few software developers have the necessary background to apply
formal methods, extensive training is required.

e It is difficult to use the models as a communication mechanism for techni-
cally unsophisticated customers.

These concerns notwithstanding, the formal methods approach has gained ad-
herents among software developers who must build safety-critical software (e.g., de-
velopers of aircraft avionics and medical devices) and among developers who would
suffer severe economic hardship should software errors occur.

A wide omay of
resources and
information on AOP
can be found of
dosd.net.

%N
N
POINT
AOSD defines
“aspects” that express
customer concerns that
cut across multiple
system functions,
features, and
information.

CHAPTER 3 PROCESS MODELS 93

3.5.3 Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex software in-
variably implement a set of localized features, functions, and information content.
These localized software characteristics are modeled as components (e.g., object-
oriented classes) and then constructed within the context of a system architecture. As
modern computer-based systems become more sophisticated (and complex), certain
“concerns’—customer required properties or areas of technical interest—span the en-
tire architecture. Some concerns are high-level properties of a system (e.g., security,
fault tolerance). Other concerns affect functions (e.g., the application of business
rules), while others are systemic (e.g., task synchronization or memory management).

When concerns cut across multiple system functions, features, and information,
they are often referred to as crosscutting concerns. Aspectual requirements define
those crosscutting concerns that have impact across the software architecture.
Aspect-oriented software development (AOSD), often referred to as aspect-oriented
programming (AOP), is a relatively new software engineering paradigm that provides
a process and methodological approach for defining, specifying, designing, and con-
structing aspects—"mechanisms beyond subroutines and inheritance for localizing
the expression of a crosscutting concern” [ELRO1].

Grundy [GRUO2] provides further discussion of aspects in the context of what he
calls aspect-oriented component engineering (AOCE):

AOCE uses a concept of horizontal slices through vertically-decomposed software com-
ponents, called “aspects,” to characterize cross-cutting functional and non-functional
propetties of components. Common, systemic aspects include user interfaces, collabora-
tive work, distribution, persistency, memory management, transaction processing, secu-
rity, integrity and so on. Components may provide or require one or more “aspect details”
relating to a particular aspect, such as a viewing mechanism, extensible affordance and in-
terface kind (user interface aspects); event generation, transport and receiving (distribu-
tion aspects); data store/retrieve and indexing (persistency aspects); authentication,
encoding and access rights (security aspects); transaction atomicity, concurrency control
and logging strategy (transaction aspects); and so on. Each aspect detail has a number of
properties, relating to functional and/or non-functional characteristics of the aspect detail.

A distinct aspect-oriented process has not yet matured. However, it is likely that such
a process will adopt characteristics of both the spiral and concurrent process models
(Sections 3.4.2 and 3.4.3). The evolutionary nature of the spiral is appropriate as aspects
are identified and then constructed. The parallel nature of concurrent development is
essential because aspects are engineered independently of localized software compo-
nents and yet, aspects have a direct impact on these components. Hence, it is essential
to instantiate asynchronous communication between the software process activities
applied to the engineering and construction of aspects and components.

A detailed discussion of aspect-oriented software development is best left to books
dedicated to the subject. The interested reader should see [GRA03], [KIS02], or [ELRO1].

94 PART ONE THE SOFTWARE PROCESS

Process Management

Obijective: To assist in the definition,
execution, and management of prescriptive

Q<

process models.

Mechanics: Process management tools allow a software
organization or team to define a complete software
process model {framework activities, actions, tasks, QA
checkpoints, milestones, and work products). In addition,
the tools provide a roadmap as software engineers do
technical work and a template for managers who must
track and control the sofiware process.

Representative Tools'?
GDPA, a research process definition tool suite, developed
at Bremen University in Germany (www.informatik.

SorTwaRE TooLs

wide array of process modeling and management
functions.

SpeeDev, developed by SpeeDev Corporation
{www.speedev.com), encompasses a suite of tools for
process definition, requirements management, issue
resolution, project planning, and tracking.

Step Gate Process, developed by Objexis
{www.objexis.com), encompasses many tools that assist
in workflow automation.

A worthwhile discussion of the methods and notation that
can be used to define and describe a complete process
model can be found at
hitp://205.252.62.38/English/
D-ProcessNotation.htm.

\ uni-bremen.de/uniform/gdpa/home.him), provides a

/

In their seminal book on the Unified Process, Ivar Jacobson, Grady Booch, and James
Rumbaugh [JAC99] discuss the need for a “use-case driven, architecture-centric, it-
erative and incremental” software process when they state:

Today, the trend in software is toward bigger, more complex systems. That is due in part
to the fact that computers become more powerful every year, leading users to expect
more from them. This trend has also been influenced by the expanding use of the Inter-
net for exchanging all kinds of information. . . . Our appetite for ever-more sophisticated
software grows as we learn from one product release to the next how the product could
be improved. We want software that is better adapted to our needs, but that, in turn,
merely makes the software more complex. In short, we want more.

A In some ways the Unified Process (UP) is an attempt to draw on the best features
and characteristics of conventional software process models, but characterize
them in a way that implements many of the best principles of agile software de-
velopment (Chapter 4). The Unified Process recognizes the importance of customer
communication and streamlined methods for describing the customer’s view of a
system (i.e., the use-case'?). It emphasizes the important role of software architec-

13 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

14 A use-case (Chapters 7 and 8) is a text narrative or template that describes a system function or fea-
-ture from the user’s point of view. A use-case is written by the user and serves as a basis for the
creation of a more comprehensive analysis model.

CHAPTER 3 PROCESS MODELS 95

ture and “helps the architect focus on the right goals, such as understandability, re-
liance to future changes, and reuse” [JAC99]. It suggests a process flow that is iter-
ative and incremental, providing the evolutionary feel that is essential in modern
software development.

In this section we present an overview of the key elements of the Unified Process.
In Part 2 of this book, we discuss the methods that populate the process and the com-
plementary UML'® modeling techniques and notation that are required as the Unified
Process is applied in actual software engineering work.

3.6.1 A Brief History

During the 1980s and into the early 1990s, object-oriented (OO) methods and pro-
gramming languages'® gained a widespread audience throughout the software en-
gineering community. A wide variety of object-oriented analysis (OOA) and design
(OOD) methods were proposed during the same time period, and a general pur-
pose object-oriented process model (similar to the evolutionary models presented
in this chapter) was introduced. Like most “new” paradigms for software engi-
neering, adherents of each of the OOA and OOD methods argued about which was
best, but no individual method or language dominated the software engineering
landscape.

During the early 1990s James Rumbaugh [RUM91], Grady Booch [BOO94], and
Ivar Jacobson [JAC92] began working on a “unified method” that would combine the
best features of each of their individual methods and adopt additional features pro-
posed by other experts (e.g., [WIR90]) in the OO field. The result was UML—a unified
modeling language that contains a robust notation for the modeling and development
of OO systems. By 1997, UML became an industry standard for object-oriented soft-
ware development. At the same time, the Rational Corporation and other vendors
developed automated tools to support UML methods.

UML provides the necessary technology to support object-oriented software en-
gineering practice, but it does not provide the process framework to guide project
teams in their application of the technology. Over the next few years, Jacobson,
Rumbaugh, and Booch developed the Unified Process, a framework for object-oriented
software engineering using UML. Today, the Unified Process and UML are widely
used on OO projects of all kinds, The iterative, incremental model proposed by the
UP can and should be adapted to meet specific project needs.

An array of work products (e.g., models and documents) can be produced as a
consequence of applying UML. However, these are often pared down by software en-
gineers to make development more agile and more responsive to change.

15 UML (the Unified Modeling Language) has become the most widely used notation for analysis and
design modeling. It represents a marriage of three important object-oriented notations.

16 If you are unfamiliar with object-oriented methods, a brief overview is presented in Chapters 8 and
9. For a more detailed presentation see [REEQ2], [STIO1], or [FOW99].

96

Usaful white popers on
the UP con be found o

e

w

Te,
POINT

UP phases are similar

in infent fo the generic

framework activities

defined in this book.

PART ONE THE SOFTWARE PROCESS

3.6.2 Phases of the Unified Process!’

We have discussed five generic framework activities and argued that they may be
used to describe any software process model. The Unified Process is no exception.
Figure 3.7 depicts the “phases” of the Unified Process (UP) and relates them to the
generic activities that have been discussed in Chapter 2.

The inception phase of the UP encompasses both customer communication and
planning activities. By collaborating with the customer and end-users, business re-
quirements for the software are identified, a rough architecture for the system is pro-
posed, and a plan for the iterative, incremental nature of the ensuing project is
developed. Fundamental business requirements are described through a set of pre-
liminary use-cases that describe what features and functions are desired by each
major class of users. In general, a use-case describes a sequence of actions that are
performed by an actor (e.g., a person, a machine, another system) as the actor inter-
acts with the software. Use-cases help to identify the scope of the project and pro-
vide a basis for project planning.

Architecture at this point is nothing more than a tentative outline of major sub-
systems and the function and features that populate them. Later, the architecture will
be refined and expanded into a set of models that will represent different views of
the system. Planning identifies resources, assesses major risks, defines a schedule,
and establishes a basis for the phases that are to be applied as the software incre-
ment is developed.

The elaboration phase encompasses the customer communication and modeling
activities of the generic process model (Figure 3.7). Elaboration refines and expands
the preliminary use-cases that were developed as part of the inception phase and
expands the architectural representation to include five different views of the soft-
ware—the use-case model, the analysis model, the design model, the implementa-
tion model, and the deployment model. In some cases, elaboration creates an
“executable architectural baseline” [ARL02] that represents a “first cut” executable
system.'® The architectural baseline demonstrates the viability of the architecture but
does not provide all features and functions required to use the system. In addition,
the plan is carefully reviewed at the culmination of the elaboration phase to ensure
that scope, risks, and delivery dates remain reasonable. Modifications to the plan
may be made at this time.

The construction phase of the UP is identical to the construction activity defined
for the generic software process. Using the architectural model as input, the con-
struction phase develops or acquires the software components that will make each

17 The Unified Process is sometimes called the Rational Unified Process (RUP) after the Rational Cor-
poration, a primary contributor to the development and refinement of the process and a builder of
complete environments (tools and technology) that support the process.

18 It is important to note that the architectural baseline is not a prototype (Section 3.4.1) in that it is
not thrown away. Rather, the baseline is fleshed out during the next UP phase.

CHAPTER 3 PROCESS MODELS 97

The Unified
Process

Elaboration

Construction

Release Transition

software increment

Production

use-case operational for end-users. To accomplish this, analysis and design models
that were started during the elaboration phase are completed to reflect the final ver-
sion of the software increment. All necessary and required features and functions of
the software increment (i.e., the release) are then implemented in source code. As
components are being implemented, unit tests are designed and executed for each.
In addition, integration activities (component assembly and integration testing) are
conducted. Use-cases are used to derive a suite of acceptance tests that are executed
prior to the initiation of the next UP phase.

The transition phase of the UP encompasses the latter stages of the generic con-
struction activity and the first part of the generic deployment activity. Software is
given to end-users for beta testing'?, and user feedback reports both defects and nec-
essary changes. In addition, the software team creates the necessary support infor-
mation (e.g., user manuals, trouble-shooting guides, and installation procedures)
that is required for the release. At the conclusion of the transition phase, the soft-
ware increment becomes a usable software release.

The production phase of the UP coincides with the deployment activity of the
generic process. During this phase, the on-going use of the software is monitored,
support for the operating environment (infrastructure) is provided, and defect reports
and requests for changes are submitted and evaluated.

It is likely that at the same time the construction, transition, and production
phases are being conducted, work may have already begun on the next software in-

‘crement. This means that the five UP phases do not occur in a sequence, but rather

with staggered concurrency.

19 Beta testing is a controlled testing action (Chapter 13) in which the software is used by actual end-
users with the intent of uncovering defects and deficiencies. A formal defect/deficiency reporting
scheme is established, and the software team assesses feedback.

98

PART ONE THE SOFTWARE PROCESS

A software engineering workflow is distributed across all UP phases. In the con-
text of UP, a workflow is analogous to a task set (defined in Chapter 2). That is, a
workflow identifies the tasks required to accomplish an important software engi-
neering action and the work products that are produced as a consequence of suc-
cessfully completing the tasks. It should be noted that not every task identified for a
UP workflow is conducted for every software project. The team adapts the process
(actions, tasks, subtasks, and work products) to meet its needs.

3.6.3 Unified Process Work Products

Figure 3.8 illustrates the key work products produced as a consequence of the four
technical UP phases. During the inception phase, the intent is to establish an overall
“vision” for the project, identify a set of business requirements, make a business case
for the software, and define project and business risks that may represent a threat to
success. From the software engineer’s point of view, the most important work prod-
uct produced during the inception is the use-case model—a collection of use-cases
that describe how outside actors (human and nonhuman “users” of the software) in-
teract with the system and gain value from it. In essence, the use-case model is a col-
lection of usage scenarios described with standardized templates that imply
software features and functions by describing a set of preconditions, a flow of events
or a scenario, and a set of post-conditions for the interaction that is depicted. Ini-
tially, use-cases describe requirements at the business domain level (i.e., the level of
abstraction is high). However, the use-case model is refined and elaborated as each
UP phase is conducted and serves as an important input for the creation of subse-
quent work products. During the inception phase only 10 to 20 percent of the use-
case mode} is completed. After elaboration, between 80 and 90 percent of the model
has been created.

The elaboration phase produces a set of work products that elaborate require-
ments (including nonfunctional®® requirements) and produce an architectural
description and a preliminary design. As the software engineer begins object-oriented
analysis, the primary objective is to define a set of analysis classes that adequately
describe the behavior of the system. The UP analysis model is the work product that
is developed as a consequence of this activity. The classes and analysis packages
(collections of classes) defined as part of the analysis model are refined further into

" a design model which identifies design classes, subsystems, and the interfaces be-

tween subsystems. Both the analysis and design models expand and refine an evolv-
ing representation of software architecture. In addition, the elaboration phase
revisits risks and the project plan to ensure that each remains valid.

The construction phase produces an implementation model that translates design
classes into software components that will be built to realize the system, and a de-
ployment model maps components into the physical compufing environment. Finally,

20 Requirements that cannot be discerned from the use-case model.

CHAPTER 3 PROCESS MODELS 99

Major work
products
produced for
each UP phase

Inception ph l .
4.7 2] Construction phase I
r

Vision document
Initial usecase model
Initial project glossary
Initial business case
Initial risk assessment
Project plan

phases and iterations
Business model

if necessary
One or more profofypes

Design model

Software components

Integrated software
increment

Test plan and procedure

Test cases

Support documentation
user manuals
installation manuals
description of current

increment

?prlmmh’dma -

a test model describes tests that are used to ensure that use-cases are properly re-
flected in the software that has been constructed.

The transition phase delivers the software increment and assesses work products
that are produced as end-users work with the software. Feedback from beta testing
and qualitative requests for change are produced at this time.

——

Prescriptive software process models have been applied for many years in an effort
to bring order and structure to software development. Each of these conventional
models suggests a somewhat different process flow, but all perform the same set of
generic framework activities: communication, planning, modeling, construction,
and deployment.

The waterfall model suggests a linear progression of framework activities that is
often inconsistent with modern realities (e.g., continuous change, evolving systems,
tight timelines) in the software world. It does, however, have applicability in situa-
tions where requirements are well-defined and stable.

Incremental software process models produce software as a series of increment
releases. The RAD model is designed for larger projects that must be delivered in
tight time frames.

Evolutionary process models recognize the iterative nature of most software en-
gineering projects and are designed to accommodate change. Evolutionary models,
such as prototyping and the spiral model, produce incremental work products (or
working versions of the software) quickly. These models can be adopted to apply

100

PART ONE THE SOFTWARE PROCESS

across all software engineering activities—from concept development to long-term
system maintenance.

The component-based model emphasizes component reuse and assembly. The
formal methods model encourages a mathematically based approach to software de-
velopment and verification. The aspect-oriented model accommodates cross-cutting
concerns that span the entire system architecture.

The Unified Process is a “use-case driven, architecture-centric, iterative and in-
cremental” software process designed as a framework for UML methods and tools.
The Unified Process is an incremental model in which five phases are defined: (1) an
inception phase that encompasses both customer communication and planning ac-
tivities and emphasizes the development and refinement of use-cases as a primary
model; (2) an elaboration phase that encompasses the customer communication and
modeling activities focusing on the creation of analysis and design models with an
emphasis on class definitions and architectural representations; (3) a construction
phase that refines and then translates the design model into implemented software
components; (4) a transition phase that transfers the software from the developer to
the end-user for beta testing and acceptance; and (5) a production phase in which
on-going monitoring and support are conducted.

[AMB02] Ambler, S., and L. Constantine, The Unified Process Inception Phase, CMP Books, 2002.

[ARLO2] Arlow, J., and 1. Neustadt, UML and the Unified Process, Addison-Wesley, 2002.

[BAC97] Bach, J., “Good Enough Quality: Beyond the Buzzword,” IEEE Computer, vol. 30, no. 8,
August 1997, pp. 96-98.

|BOE88] Boehm, B., “A Spiral Model for Software Development and Enhancement,” Computer,
vol. 21, no. 5, May 1988, pp. 61-72.

[BOE98] Boehm, B., “Using the WINWIN Spiral Model: A Case Study,” Computer, vol. 31, no. 7,
July 1998, pp. 33-44.

[BOEO1] Boehm, B., “The Spiral Model as a Tool for Evolutionary Software Acquisition,” CrossTalk,
May 2001, available at http://www.stsc hill.af.mil/crosstalk/ 2001/05/boehm.html.

[BOO94] Booch, G., Object-Oriented Analysis and Design, 2nd ed., Benjamin Cummings, 1994.

[BRA94] Bradac, M., D. Perry, and L. Votta, “Prototyping a Process Monitoring Experiment,” [EEE
Trans. Software Engineering, vol. 20, no. 10, October 1994, pp. 774-784.

[BRO75] Brooks, F., The Mythical Man-Month, Addison-Wesley, 1975.

[BUT94] Butler, J., “Rapid Application Development in Action,” Managing System Development,
Applied Computer Research, vol. 14, no. 5, May 1994, pp. 6-8.

[DYE92] Dyer, M., The Cleanroom Approach to Quality Software Development, Wiley, 1992.

[ELRO1] Elrad, T., R. Filman, and A. Bader (eds.), “Aspect-Oriented Programming,” Comm. ACM,
vol. 44, no. 10, October 2001, special issue.

[FOW99] Fowler, M., and K. Scott, UML Distilied, 2nd ed., Addison-Wesley, 1999.

[GIL88] Gilb, T., Principles of Software Engineering Management, Addison-Wesley, 1988.

[GRAO3] Gradecki, J., and N. Lesiecki, Mastering Aspectj: Aspect-Oriented Programming in Java,
Wiley, 2003.

[GRUO2] Grundy, J., “Aspect-Oriented Component Engineering,” 2002, http:// www.cs.auck-
land.ac.nz/~john-g/aspects.html.

[HAN95] Hanna, M., “Farewell to Waterfalls,” Software Magazine, May 1995, pp. 38—46.

[HES96] Hesse, W., "Theory and Practice of the Software Process—A Field Study and its Impli-
cations for Project Management,” Software Process Technology, 5th European Workshop,
EWSPT 96, Springer LNCS 1149, 1996, pp. 241-256.

